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transformations 
an be applied repeatedly, or in a hi-erar
hi
al fashion, as illustrated below. The bene�ts ofthe NavP in
remental parallelization in
lude: (1) Ev-ery program is a result of applying the me
hani
s of oneof the transformations and is a natural and in
rementalstep from its prede
essor. As a result, no abrupt 
hangein 
ode will happen between any 
onse
utive steps; (2)Every intermediate program is an improvement fromits prede
essor. If program development is limited bytime or resour
es, any one of the intermediate programs
an be taken as produ
tion 
ode; (3) The transforma-tions are highly me
hani
al and straightforward to use,and yet the resulting parallel programs are elegant andeÆ
ient.We brie
y des
ribe the NavP methodology inSe
t. 2. Se
tion 3 summarizes the appli
ation of NavPto the 
lassi
al problem of matrix multipli
ation; formore details and the 
omplete pseudo
ode at ea
h in-termediate step, the interested reader is referred to our
onferen
e paper [1℄. Se
tion 4 
ontains performan
edata. We present a detailed 
omparison of the paral-lel algorithm derived from our NavP solution with the
lassi
 Gentleman's algorithm in Se
t. 5.2. Navigational ProgrammingNavigational Programming (NavP) is a methodologyfor distributed parallel programming based on the useof self-migrating 
omputations. In NavP 
ode, a pro-grammer inserts navigational 
ommands, i.e., hop()statements, to migrate 
omputation lo
us in order toa

ess remotely distributed data and spread out 
om-putations. Small data that is \
arried" by the moving
omputation is put in \agent variables," whereas largedata that stays on a 
omputer is held by \node vari-ables." An agent variable is private to a 
omputationthread, and is available to the thread wherever it mi-grates. The 
ost of a hop() is mainly spent in shippingthe data stored in agent variables. The syn
hroniza-tion among di�erent migrating 
omputations is donethrough \events" (signalEvent() and waitEvent()).Details on how to use the Messengers system 
an befound in the manual [2℄.NavP provides a di�erent view of distributed 
om-putation from the 
lassi
al SPMD view. The SPMDview des
ribes distributed 
omputations at stationary
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(d)Fig. 1 The 
ode transformations in NavP. (a) Sequential. (b)DSC. (
) Pipelining. (d) Phase shifting.lo
ations, whereas the NavP view des
ribes a 
om-putation following the movement of its lo
us. Thethree transformations under the NavP view are de-pi
ted in Fig. 1. Here and throughout the paper, ar-rows indi
ate hop() operations. The basi
 idea be-hind the transformations is to spread out 
omputationsusing self-migrating 
omputation threads as soon aspossible without violating any dependen
y 
onditions.(1) DSC Transformation: Large data is distributedamong the PEs (pro
essing elements), and hop() state-ments are inserted into the sequential 
ode in order forthe 
omputation to \
hase" large data while 
arryingsmall data. The DSC Transformation is s
hemati
allydepi
ted using Figs. 1(a) and (b). The resulting pro-gram performs \Distributed Sequential Computing,"whi
h is more 
onveniently termed DSC. The imme-diate bene�t of DSC is that, with a reasonable amountof work, a sequential program 
an be used to eÆ
ientlysolve large problems that 
annot �t in the main mem-ory of one 
omputer. By using a network of worksta-tions, the DSC program has 
ompletely removed pagingoverhead by trading it against a modest amount of net-work 
ommuni
ation [3℄. DSC also serves as the start-ing point of parallel program development in NavP.(2) Pipelining Transformation: This transforma-

tion is depi
ted using Figs. 1(b) and (
). The basi
 ideais to pipeline multiple DSC 
omputation threads. Syn-
hronization may be ne
essary to keep the DSC threadsordered 
orre
tly in the pipeline. (3) Phase-shiftingTransformation: Sometimes the dependen
y amongdi�erent 
omputations allows di�erent DSC threads toenter the pipeline from di�erent lo
ations. In these sit-uations, we 
an phase shift the DSC threads to a
hievefull parallelism, as depi
ted in Figs. 1(
) and (d).The NavP transformations 
an be systemati
allyapplied repeatedly or hierar
hi
ally in di�erent dimen-sions of a network of PEs, as will be shown with matrixmultipli
ation later in this paper. At ea
h step, we havea fully fun
tional implementation of matrix multipli
a-tion that is an improvement of the previous step. Theresult of the �nal step has a resemblan
e to the 
las-si
al Gentleman's Algorithm, but there are importantdi�eren
es as des
ribed in Se
t. 5.3. In
remental Parallelization of Matrix Mul-tipli
ationMatrix multipli
ation is a fundamental operation ofmany numeri
al algorithms. Pseudo
ode for sequen-tial matrix multipli
ation is listed in Fig. 2. Through-out the paper, we assume N is the order of thesquare matri
es involved. It is 
lear that the 
om-putation of ea
h entry of the matrix C is indepen-dent of all other entries of C, and therefore there areN2 updatings that 
an be done in parallel. Never-theless, exploiting the abundant parallelism in ma-trix multipli
ation is not as straightforward as onemight think. Suppose we parallelize the two outerloops using the popular doall notation, as shown inFig. 3. We 
an get, for example, two 
on
urrent state-ments run by two PEs: C(1; 1)+ = A(1; 1) � B(1; 1) andC(1; 2)+ = A(1; 1) � B(1; 2). These two parallel exe
u-tions both need the entry A(1; 1). If the requests forA(1; 1) from the two PEs arrive at the same time atthe PE that hosts A(1; 1), 
ontention happens. On theother hand, if we 
a
he multiple 
opies of A(1; 1) onthe PEs that require it, this solution is not s
alable.Gentleman 
ondu
ted resear
h into the data movementrequired for matrix multipli
ation, and his analysis 
on-�rmed that data movement { and not arithmeti
 oper-ations { is often the limiting fa
tor in the performan
eof algorithms [4℄, [5℄.(1) do i=0,N-1(2) do j=0,N-1(3) t = 0.0(4) do k=0,N-1(5) t += A(i,k) * B(k,j)(6) end do(7) C(i,j) = t(8) end do(9) end doFig. 2 Pseudo
ode for sequential matrix multipli
ation.



PAN et al.: TOWARD INCREMENTAL PARALLELIZATION USING NAVIGATIONAL PROGRAMMING 3(1) doall i=0,N-1(2) doall j=0,N-1(3) C(i,j) = 0.0(4) do k=0,N-1(5) C(i,j) += A(i,k) * B(k,j)(6) end do(7) end doall(8) end doallFig. 3 Pseudo
ode for parallel matrix multipli
ation usingdoall.We provide a solution that does not trigger 
on-tention (i.e., we avoid the situation where multiple PEsget matrix entries from a single PE at the same time),and does not use data repli
ation (i.e., at any giventime, there is only one 
opy of any matrix entry). Forsimpli
ity, we des
ribe the problem and our solution ata �ne granularity level. That is, we assume N == P,where P is either the number of PEs in a 1D pro
essornetwork or the order of a 2D pro
essor network. To ex-tend our solution to a 
oarser level, we would treat ea
helement (e.g., C01 or A21) as a sub-matrix blo
k, insteadof an entry of the matrix. Our solution is in
rementaland involves applying a series of transformations, ob-taining a algorithm at ea
h step. The pseudo
ode forea
h algorithm in the series is given in our 
onferen
epaper [1℄; here, be
ause of page limitations, we simplygive a summary.We �rst apply the DSC Transformation to sequen-tial matrix multipli
ation, as depi
ted in Fig. 4(a).The essen
e of this DSC transformation is to distributethe 
omputation in the j dimension. The PE net-work is 1D in whi
h ea
h PE has a unique identi-�er HnodeID = 0; 1; :::; N� 1 from west to east. Thi
kboxes 
ontain node variables on di�erent ma
hines, andthin boxes 
arry agent variables. Next, we apply thePipelining Transformation to the DSC 
ode obtainedfrom the last step, as depi
ted in Fig. 4(b). Ea
h rowof matrix A is assigned to a 
omputation thread, andthese threads are \inje
ted," or spawned, into the PEpipeline in turn, and follow ea
h other in the networkto 
ompute the 
orresponding C entries. We then applythe Phase-shifting Transformation to a
hieve full DPC,as depi
ted in Fig. 4(
). This is possible be
ause ea
hrow of A, though needed on all three PEs, 
an startits 
omputation from any PE. At this point we havea matrix multipli
ation algorithm that is fully parallel,ex
ept that it only uses one dimension (the j dimen-sion) rather than two.To exploit the i dimension as well, we nextintrodu
e a 2D network in whi
h ea
h PE hasa unique 2D identi�er (HnodeID; VnodeID), whereHnodeID = 0; 1; :::; N� 1 from west to east, andVnodeID = 0; 1; :::; N� 1 from north to south, and ap-ply the DSC Transformation in the se
ond dimension,as depi
ted in Fig. 4(d). We then apply the Pipelin-ing Transformation in both dimensions, as depi
ted inFig. 4(e). A pair of A and B entries 
an move on along

their pipelines respe
tively as soon as they �nish 
om-puting and 
ontributing the 
orresponding C entry. Aprodu
er BCarrier needs to make sure that the B en-try produ
ed by its prede
essor in the pipeline is 
on-sumed before it puts the B entry it 
arries in pla
e.Finally, we apply the Phase-shifting Transformation inboth dimensions to a
hieve full parallelization, as de-pi
ted Fig. 4(f).In Fig. 4, ea
h sub-matrix blo
k, e.g., A10 or C11, is
alled a \distribution blo
k" in our implementation, asit is a basi
 unit of data distribution on a PE. To a
hievebetter performan
e from a blo
k algorithm, a furtherlevel of matrix de
omposition is used [6℄. A distribu-tion blo
k is de
omposed into \algorithmi
 blo
ks," andea
h algorithmi
 blo
k of A or B is 
arried by a migrat-ing thread (i.e., ACarrier or BCarrier). If we \zoomin" to the physi
al node (HnodeID = 1; VnodeID = 1) inFig. 4(f) (assuming the entire PE network is the upper-left 2� 2 pro
essors), we 
an see algorithmi
 blo
ks asdepi
ted by lower
ase letters (e.g., a57 or 
46) in Fig. 6of Se
t. 5.1. As an example, the distribution blo
k ofC11 in Fig. 4(f) is de
omposed into algorithmi
 blo
ks
ontained in the thi
k box (whi
h indi
ates a physi
alnode) in Fig. 6. Our sequential and MPI implementa-tions des
ribed below use algorithmi
 blo
ks as well.Pseudo
ode for DPC in both dimensions is listedin Fig. 5. The matri
es are initially distributed su
hthat A(i; j), B(i; j) and C(i; j) (initialized to 0) are onnode(i; j). In this pseudo
ode, A and B indi
ate nodevariables, whereas mA and mB represent agent variables.In our NavP programs, we adapt a naming 
onventionof starting an agent variable's name with a lower
ase m.Matrix A is loaded into agent variable mA and 
arriedby the migrating thread. node(j) maps to the PE thathosts 
olumn j of matri
es B and C. Every time thethread of 
omputation hops ba
k to node(0), it will pi
kup a di�erent row of matrix A for the 
omputation of theloop over j. Detailed des
riptions and the pseudo
odefor all individual in
remental steps 
an be found in our
onferen
e paper [1℄.4. Performan
e DataWe have implemented parallel matrix multipli
ation us-ing both NavP and message passing. The NavP systemused wasMessengers (Version 1.2.05 Beta) developedat the Donald Bren S
hool of Information & ComputerS
ien
es, University of California Irvine [2℄. The mes-sage passing system used was LAM 7.0.6 from IndianaUniversity [7℄. The S
aLAPACK used was version 1.7from the University of Tennessee, Knoxville and theOak Ridge National Laboratory [8℄. The C 
ompilerused was GNU g

-3.2.2, and the Fortran 
ompiler usedwas GNU g77-3.2.2. The performan
e data was ob-tained from SUN workstations (SUN Blade 100, CPU:502 MHz SUNW,UltraSPARC-IIe, OS: SunOS Release5.8) with 256MB of main memory, 1GB of virtual mem-
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ation. (a) DSC. (b) 1D pipelining.(
) 1D phase shifting. (d) 2D DSC. (e) 2D pipelining. (f) 2D phase shifting.(1) do mj=0,N-1(2) hop(node(0,mj))(3) inje
t(spawner(mj))(4) end do(1) spawner(int mj)(2) do mi=0,N-1(3) hop(node(mi,mj))(4) signalEvent(EC(mi,mj))(5) inje
t(ACarrier(mi,mj))(6) inje
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ode for matrix multipli
ation with full DPC inboth dimensions.ory, and 100Mbps of Ethernet 
onne
tion. These work-stations have a shared �le system (NFS).When the total memory use on a PE rea
hes or ex-


eeds the available physi
al memory, performan
e be-
omes poor. This is be
ause of paging overhead. Forsome algorithms, when the working set ex
eeds thephysi
al memory, thrashing happens and the perfor-man
e is 
ompletely una

eptable. In distributed 
om-putation, the data of a sub-problem may �t in the mem-ory of a ma
hine 
ompletely even if the entire problemis too large for one 
omputer. In order to obtain fairspeedup numbers, we 
al
ulate sequential timing forlarge problems using least squared 
urve �tting with apolynomial of order 3 using performan
e numbers 
ol-le
ted with small problems.In all tables, \Matrix order" means the order ofmatri
es A, B, or C. \Blo
k order" means the order ofthe algorithmi
 blo
ks. Table 1 lists the performan
edata for NavP and S
aLAPACK on a 1D PE networkof three ma
hines. It 
an be seen that the performan
eimproves as we go from NavP DSC to NavP pipeliningand then to NavP phase shifting. For small problems,NavP 1D DSC is only marginally slower than the 
orre-sponding sequential exe
ution, but as the problem sizegrows it be
omes faster. This 
an be seen by 
ompar-ing the data in the \NAVP (1D DSC)" 
olumn with theunstarred data in the \Sequential" 
olumn (i.e., the a
-tual data, as opposed to the data derived from 
urve�tting.) Table 2 indi
ates that with several networked
omputers DSC performs almost as fast as the sequen-tial program running with enough main memory, and itis signi�
antly faster than the sequential program pag-



PAN et al.: TOWARD INCREMENTAL PARALLELIZATION USING NAVIGATIONAL PROGRAMMING 5Table 1 Performan
e of matrix multipli
ation on 3 PEs.Sequential NavP (1D DSC) NavP (1D pipeline) NavP (1D phase) S
aLAPACK#Matrixorder Blo
korder Time(s) Speedup Time(s) Speedup Time(s) Speedup Time(s) Speedup Time(s) Speedup1536 128 65.44 1.00 67.22 0.97 27.72 2.36 24.55 2.67 26.80 2.442304 128 219.71 1.00 229.45 0.96 91.03 2.41 81.23 2.70 82.83 2.653072 128 520.30 1.00 543.91 0.96 205.87 2.53 189.50 2.75 211.45 2.464608 128 1934.73 (1745.94*) 1.00 1809.73 0.96 688.18 2.54 653.64 2.67 767.91 2.275376 128 3033.92 (2735.69*) 1.00 2926.24 0.93 1151.07 2.38 990.05 2.76 1173.46 2.336144 256 5055.93 (4268.16*) 1.00 4697.32 0.91 1811.77 2.36 1554.99 2.74 1984.18 2.15(*) Obtained from least squared 
urve �tting and used in 
al
ulating speedup.(#) S
aLAPACK uses a logi
al LCM hybrid algorithmi
 blo
king te
hnique, not 
ontrolled by users [6℄.Table 2 Performan
e of matrix multipli
ation on 8 PEs.Sequential NavP (1D DSC)Matrixorder Blo
korder Time(s) Speedup Time(s) Speedup9216 128 36534.49 (13921.50*) 1.00 14959.42 0.93(*) Obtained from least squared 
urve �tting and used in
al
ulating speedup.ing using virtual memory. With N = 9216, the totalmemory usage is about 1GB, but ea
h of our ma
hineshas only 256MB of main memory.Tables 3 and 4 list the performan
e data for MPI,NavP, and S
aLAPACK on a 2D PE network of ninema
hines. Again, performan
e improves as we hierar-
hi
ally apply the three NavP transformations in these
ond dimension.In both 1D and 2D 
ases, our DSC and pipelin-ing programs a
hieve high performan
e. This 
anbe attributed to the use of algorithmi
 blo
ks. TheRowCarriers or ACarriers, ea
h of whi
h responsiblefor the 
omputation of a row of algorithmi
 blo
ks or analgorithmi
 blo
k, 
an spread out their 
omputationsto the entire network earlier than if a full distributionblo
k on a PE has to be 
omputed before these 
arriers
an hop out.The MPI implementation used for the 
omparisonwas Gentleman's Algorithm modi�ed to use blo
k par-titioning of matri
es, and with pointer swapping usedto avoid unne
essary lo
al data 
opying [1℄. S
aLA-PACK uses a logi
al LCM hybrid algorithmi
 blo
kingte
hnique [6℄, so the blo
k orders in the tables do notapply to the S
aLAPACK numbers.The performan
e data indi
ates that the NavP im-plementation a
hieves higher speedup than the MPIimplementation. It would be possible to improve theperforman
e of the MPI 
ode by subtle �ne-tuning ata 
ost of 
onsiderably more programming e�ort. Someways that this 
ould be done are des
ribed in Se
t. 5.Nevertheless, the data makes it 
lear that the NavPprogram is faster than a straightforward implementa-tion of Gentleman's Algorithm and 
ompetitive with ahighly tuned version.5. Comparison of ImplementationsNot only does NavP bring in a new way of thinking,but the NavP implementation is also superior in per-

forman
e. In the following, we 
ompare our solutionwith message passing and try to explain why NavP iseasier to use and faster than message passing.5.1 Communi
ationIn all of our sequential, NavP, and MPI implementa-tions, we use blo
k algorithms. The C matrix is parti-tioned into algorithmi
 blo
ks, and ea
h physi
al nodeis assigned to a number of su
h blo
ks. The matri
es Aand B are partitioned in the same way as C. Figure 6depi
ts an example in whi
h the large thi
k box repre-sents a physi
al node that hosts C algorithmi
 blo
ks(e.g., 
44, 
45, and et
.) and algorithmi
 blo
ks of Aand B (e.g., a40, a57, or b04, b75, and et
.) 
ome fromwest and north neighbors to parti
ipate in the 
ompu-tations that will 
ontribute to the C algorithmi
 blo
ks.The bene�t of this blo
k algorithm is that by adjust-ing the order of algorithmi
 blo
ks, we 
an obtain thebest 
a
he and 
ommuni
ation performan
e for our se-quential, NavP, and MPI implementations. (For the se-quential program, the blo
k algorithm improves 
a
heperforman
e only.)
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Fig. 6 One s
enario of matrix multipli
ation using algorithmi
blo
ks on a physi
al node.We use a s
enario depi
ted in Fig. 6 to explain howthe NavP 
ode 
an eÆ
iently utilize CPU 
y
les andhide some of the 
ommuni
ations. Let us suppose that,after the algorithmi
 blo
k b04 
arried by a BCarrier
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e of matrix multipli
ation on 2� 2 PEs.Sequential MPI (Gentleman) NavP (2D DSC) NavP (2D pipeline) NavP (2D phase) S
aLAPACK#Matrixorder Blo
korder Time(s) Speedup Time(s) Speedup Time(s) Speedup Time(s) Speedup Time(s) Speedup Time(s) Speedup1024 128 19.49 1.00 6.02 3.24 7.63 2.55 5.88 3.31 5.54 3.52 5.23 3.732048 128 158.51 1.00 50.99 3.11 50.59 3.13 42.61 3.72 41.54 3.82 45.53 3.483072 128 520.30 1.00 157.53 3.30 158.06 3.29 144.09 3.61 137.39 3.79 156.27 3.334096 128 1281.58 (1238.21*) 1.00 367.04 3.37 362.73 3.41 328.98 3.76 321.70 3.85 417.83 2.965120 128 2727.86 (2373.32*) 1.00 733.91 3.23 792.23 3.00 757.67 3.13 624.87 3.80 907.16 2.62(*) Obtained from least squared 
urve �tting and used in 
al
ulating speedup.(#) S
aLAPACK uses a logi
al LCM hybrid algorithmi
 blo
king te
hnique, not 
ontrolled by users [6℄.Table 4 Performan
e of matrix multipli
ation on 3� 3 PEs.Sequential MPI (Gentleman) NavP (2D DSC) NavP (2D pipeline) NavP (2D phase) S
aLAPACK#Matrixorder Blo
korder Time(s) Speedup Time(s) Speedup Time(s) Speedup Time(s) Speedup Time(s) Speedup Time(s) Speedup1536 128 65.44 1.00 10.97 5.97 13.66 4.79 9.18 7.13 8.21 7.97 8.08 8.102304 128 219.71 1.00 29.95 7.34 39.53 5.56 29.93 7.34 26.74 8.22 29.39 7.483072 128 520.30 1.00 82.25 6.33 86.52 6.01 66.94 7.77 62.36 8.34 70.92 7.344608 128 1934.73 (1745.94*) 1.00 241.92 7.22 268.41 6.50 220.28 7.93 205.68 8.49 255.87 6.825376 128 3033.92 (2735.69*) 1.00 437.27 6.26 421.78 6.49 360.77 7.58 323.67 8.45 398.50 6.866144 256 5055.93 (4268.16*) 1.00 637.79 6.69 745.18 5.73 584.85 7.30 510.29 8.36 635.36 6.72(*) Obtained from least squared 
urve �tting and used in 
al
ulating speedup.(#) S
aLAPACK uses a logi
al LCM hybrid algorithmi
 blo
king te
hnique, not 
ontrolled by users [6℄.arrives, the north neighbor be
omes slow for some rea-son and delays the BCarriers of b75, b66, and b57 fromhopping into the node; meanwhile, let us also imaginethat the west neighbor 
ontinues to run at a normalspeed, allowing ACarriers 
arrying a40, a57, a66, anda75 and their followers a50, a67, a76, a60, a77 and a70hop in as usual. The ACarrier of a40 will be put tosleep after it 
omputes with b04 to 
ontribute to 
44,be
ause the event to be signaled by the BCarrier ofb75 is not posted yet. Now the CPU 
y
les will beused for 
omputations that 
ontribute to 
54, 
64, and
74, as the 
orresponding ACarriers hop in. At thistime, assuming the BCarriers of b75, b66, and b57 allarrive, the ACarrier of a40 will be signaled and �nishthe 
omputations that 
ontribute to 
45, 
46, and 
47.(InMessengers, waitEvent(E) falls through when theevent E is signaled before the waitEvent(E) is posted.)So the 
omputations a
tually happen in the order thatis marked by numbers in bold font in Fig. 6. (Thisdoes not in
lude the 
omputations involving those al-gorithmi
 blo
ks of B that are already on this PE at thebeginning of this s
enario.) Sin
e the CPU is mostlybusy doing 
omputations as the data they need (i.e.,the 
orresponding algorithmi
 blo
k pairs of A and B)be
ome available, the 
ommuni
ation overhead of thealgorithmi
 blo
ks is mostly hidden from being seen inthe overall elapsed time.The run-time task s
heduling des
ribed above ishandled by the queuing me
hanisms built into theMes-sengers daemon. Thus it is handled at the systemlevel, invisible to the appli
ation programmers. It isthe NavP view that allows us to fo
us on des
ribing theappli
ation level 
omputations following their move-ment and to fa
tor out the fun
tionality asso
iated withs
heduling { 
ode that des
ribes behaviors at �xed lo
a-tions { and put it into the Messengers daemon 
ode.

In MPI, the situation is quite di�erent. Thestraightforward way to program the blo
k implemen-tation is to have a loop over all the algorithmi
 blo
ksof C that are hosted on a parti
ular physi
al node. Theloop introdu
es an arti�
ial sequential order to the 
om-muni
ations and 
omputations, even though they area
tually independent of ea
h other. This arti�
ial se-quential order may result in slower performan
e in somes
enarios. For example, if the load in the network isdynami
ally 
hanging due to other users sharing someof the PEs or subnet and if the 
hange is distributedrandomly, the MPI implementation may be unable toadapt to the 
hange eÆ
iently be
ause CPU 
y
les arewasted while waiting for a parti
ular sub-matrix pairto arrive. In 
ontrast, the NavP solution is able to\absorb" the impa
ts, as des
ribed above. Even whenthe load in the network is perfe
tly homogeneous andbalan
ed, the best order in whi
h to perform the sub-
omputations depends on the appli
ation. In matrixmultipli
ation, it is likely to be a skewed order that isneither row-major nor 
olumn-major and may be dif-�
ult to des
ribe with nested loops. Any prede�nedorder that is not 
arefully 
hosen may 
ause unne
es-sary \syn
hronization 
uts" in the network that slowdown the exe
ution. In 
ontrast, the NavP solutionperforms 
omputations as the data they need be
omesavailable, rather than using a prede�ned order.There are several ways to remove the arti�
ial se-quen
ing of 
omputation in the MPI implementation.One way is to mimi
 the fun
tionality of the Messen-gers daemon by adding task-s
heduling logi
 to theMPI appli
ation 
ode. Be
ause there is not a uniformway of 
ombining task s
heduling 
ode and appli
ation
ode, this would need to be done separately for ea
happli
ation. So this shifts the burden of task s
hedul-ing from the system to the appli
ation programmer and
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h more 
ompli
ated.Another approa
h would use a 
ompiler that performsdependen
y analysis for the 
ode segments that are ex-e
uted on a lo
al node and assigns independent 
om-putations to di�erent threads. This solution 
ould bemade to work, and it would be general enough to han-dle future appli
ations. However, this solution involveswriting a parallelizing 
ompiler to a
hieve what is gen-erally 
onsidered to be a manual programming method.And the 
ompiler needs to be able to understand the be-haviors of blo
king and non-blo
king send and re
eiveand their use of bu�ers in MPI.Yet another approa
h is to use parallel dire
tives,su
h as those in HPF [9℄, UPC [10℄, or OpenMP [11℄, toassign independent 
omputations to di�erent threads.Hybrid use of MPI and OpenMP has been applied [12℄,and a thread-
ompliant implementation of MPI sup-porting MPI THREAD MULTIPLE in LAM/Open MPIhas been developed [13℄. Nevertheless, using multi-threading under MPI to in
rease performan
e on everyMPI node in e�e
t requires 
ase-by-
ase manual han-dling of an arti�
ial 
omputation sequen
ing problemthat does not even exist in the NavP program. NavPdoes not have this problem be
ause what a NavP pro-grammer sees is a virtual multi-threading environmenton top of networked distributed memory ma
hines.5.2 Ca
he Performan
eDuring the exe
ution of a blo
k fashion sequential ma-trix multipli
ation program, an algorithmi
 blo
k of Cis updated using the produ
ts of several pairs of algo-rithmi
 blo
ks of A and B. This algorithmi
 blo
k of Cstays in 
a
he for di�erent pairs of A and B algorithmi
blo
ks until it is fully updated.By 
ontrast, in our MPI implementation, sin
e theloop over all algorithmi
 blo
ks of C that a physi
al nodehosts updates all these blo
ks using the blo
k pairs of Aand B arrived during the last phase of 
ommuni
ation,every triplet of A B C blo
ks are potentially fresh in
a
he. This may lead to less eÆ
ient 
a
he use.In the NavP implementation, an ACarrier 
ontin-uously 
omputes and 
ontributes to the C algorithmi
blo
ks as long as the 
orresponding algorithmi
 blo
ksof B are ready for use. One s
enario of this is depi
tedin Fig. 6 in whi
h 
ontributions to algorithmi
 blo
ks
45, 
46, and 
47 are 
omputed by the ACarrier ofa40 without stop. This results in similar 
a
he perfor-man
e as the sequential exe
ution be
ause the A blo
kstays in 
a
he during the pro
ess.The following numbers provide an estimate of thesavings that 
an be a
hieved by better 
a
he perfor-man
e. With matrix order of N = 6144, a blo
k or-der of 256, and a 3� 3 network, on average, the MPI
ode spent 0:334 se
onds on ea
h produ
t of a pair of256� 256 blo
ks, whereas the NavP 
ode spent 0:322se
onds. Applied to a total of 1; 536 blo
ks on ea
h PE,

the overall savings from a better 
a
he performan
e ofNavP is 18:43 se
onds. This is roughly a 4% improve-ment from a total elapsed time of 510:29 se
onds (referto Table 4).To a
hieve better 
a
he performan
e in the MPI
ode, the program would need to hold an A blo
k andlook for all 
orresponding B blo
ks that are ready to
ompute. If no su
h B blo
ks are ready, there wouldhave to be a \
ontext swit
h" to the next A blo
k. Thiswould require a queuing me
hanism, as des
ribed inSe
t. 5.1, to allow the program to later return to theun�nished A blo
ks.5.3 Initial Staggering
4
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(b)Fig. 7 (a) An example in whi
h forward staggering takes morethan two steps. N = 5 and position shift is 1. (b) An example inwhi
h forward staggering 
an take three steps even if N is a powerof 2 (N = 8). The position shift is 3. Three steps if 
ommuni
ationin node pairs (0; 5); (7; 4); (6; 3) takes pla
e in the �rst step.In the �nal NavP program listed in Fig. 5, \re-verse staggering" is used for both matri
es A and B.That is, the \
hain" of a row or a 
olumn is reverse-ordered and shifted. An entry of matrix A on node(i; j) is dire
tly staggered to node TA(i; j), whereTA(i; j) = (i; (N� 1� j� i)%N). The staggering for Bis de�ned similarly: TB(i; j) = ((N� 1� j� i)%N; j).Assuming that a fully 
onne
ted network and a
ollision-free swit
h are available, the 
ost of initialstaggering for the Amatrix in the NavP algorithm listedin Fig. 5 is exa
tly two 
ommuni
ation steps. This
an be seen by observing that TA(TA(i; j)) = (i; j).Hen
e the staggering 
onsists of a 
olle
tion of in-dependent swaps of A values between pairs of nodes,whi
h 
an 
learly be performed in two 
ommuni
ationsteps. (Note that for odd N there are nodes for whi
hTA(i; j) = (i; j); su
h nodes stagger their values forfree.) Similarly, the staggering for B 
an be performedin two 
ommuni
ation steps.The staggering of Gentleman's Algorithm is di�er-ent from that of the NavP 
ode. Gentleman's Algo-rithm uses \forward staggering," whi
h shifts the posi-tions of the entries without reversing the order. The



8 IEICE TRANS. INF. & SYST., VOL.E89{D, NO.2 FEBRUARY 2006staggering formula for the A matrix in Gentleman'sAlgorithm is T0A(i; j) = (i; (j� i)%N). This forwardstaggering may require three 
ommuni
ation steps, asillustrated in Fig. 7(a). In general, unless N is a powerof two, there will be some row that requires three 
om-muni
ation steps. (Proof: if i is the highest power of2 that divides N, then the dire
ted graph representingthe forward staggering of row i will have an odd 
y-
le, and hen
e the staggering of this row will requirethree 
ommuni
ation steps.) Even when N is a powerof two, spe
ial 
are must be taken for forward stagger-ing to avoid wasting a 
ommuni
ation step, as shownin Fig. 7(b). In our implementation of Gentleman'sAlgorithm, we do not have this me
hanism in pla
e.Initial staggering in Cannon's Algorithm [14℄moves the A entries east and the B entries south. Whilethe staggering may look the same as NavP, it is di�erentbe
ause the sequen
e of matrix entries is not reversed.The 
ost of initial staggering in Cannon's Algorithm isexa
tly the same as that of Gentleman's Algorithm.The reverse staggering of our NavP algorithm,whi
h is always as good as that of Gentleman's Al-gorithm and usually better, was not arrived at by a
-
ident. It is a dire
t result of our NavP methodologyand our stri
t systemati
al appli
ation of the three 
odetransformations that in
rementally develop a parallelprogram from the sequential program. Of 
ourse, mod-ifying the MPI algorithm to use reverse staggering isquite easy, unlike the �ne tuning for improving 
om-muni
ation overhead and 
a
he performan
e dis
ussedearlier in this se
tion.6. Final RemarksWe have shown that systemati
 appli
ation of NavPtransformations yield a series of programs, ea
h an im-provement on the previous one, that 
onstitute an in-
remental path from sequential matrix multipli
ationto a 
ompletely parallel version. The transformationsare me
hani
al and straightforward to apply.Our NavP matrix multipli
ation implementation isfaster than our MPI 
ode, as seen in Se
t. 4. This ismainly be
ause the NavP 
ode su

essfully hides someof the 
ommuni
ation overhead using an eÆ
ient buttransparent run-time s
heduling. This task s
hedulingfun
tionality is fa
tored out from the appli
ation 
odeunder the NavP view and put into the Messengersdaemon. Although it is entirely possible to a
hievebetter task s
heduling in the MPI 
ode, with the MPIenvironment available today, the 
ode that implementsthis would have to be developed separately for ea
h ap-pli
ation and interleaved with the appli
ation 
ode. Inthis sense, message passing is harder to use than NavP.Our performan
e numbers indi
ate that NavP is apromising approa
h, not only in terms of its simpli
itybut also in terms of the eÆ
ien
y of the �nal program.Nevertheless, many questions and open resear
h prob-

lems remain. The appli
ability of our method to othernumeri
al problems, and its s
alability on larger net-works need to be assessed. Another key question is howwell our method 
an handle irregular 
omputations andproblems on sparse matri
es. Finally, the me
hani
alnature of our NavP transformations suggests that theyare at least partially automatable. Building tools toperform this automation is part of our future work.Referen
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